Academic Year: 2015-2016
Semester: Autumn
Date: December 27, 2015
Answer All Questions

Faculty of Pharmacy

Mathematics: OCM 103
Final Exam
Duration Time: 2 Hours
No. of questions: 4 Total Mark: 60

Question 1

(a)If $A=\left[\begin{array}{lll}1 & 3 & -2 \\ 0 & 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 0 & 4 \\ 1 & 3 & 1\end{array}\right]$

Find, if possible, $A+B, A . A, A . B,|A|, A . A^{t},\left|A^{t} . B\right|$.
(b)Find the eigenvalues and eigenvectors of : $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$. Also, find A^{-1}.

Question 2

(a)Solve the linear system : $x-2 y=2, \quad 2 x-y=7, \quad 3 x-3 y=9$.
(b)If a drug exists in three dosage forms: The first of concentration $1 \mathrm{mg} /$ tablet,

The second of concentration $2 \mathrm{mg} /$ tablet, The third of concentration $4 \mathrm{mg} /$ tablet. If the pharmacist wanted to produce 8 tablets of concentration $2.5 \mathrm{mg} /$ tablet by mixing whole tablets. Find two possible solutions.

Question 3

(a)Find $y^{`}$ where:
(i) $y=x^{-2}+3^{x}+2 x$
(ii) $y=x^{3} \cdot 4^{x}+4$
(iii) $y=\cos x \cdot \log x$
(iv) $y=[\ln x+\sin x]^{8}$
(v) $y=3^{2 x}+\sin ^{5} x$
(vi) $y=x+\frac{\ln (1+x)}{3}$
(b)Find the integrals:
(i) $\int\left(x^{4}+2^{3 x}\right) d x$
(ii) $\int\left(\frac{2}{3}+\frac{x}{\sqrt{3+x^{2}}}\right) d x$
(iii) $\int(\cos x-2 \sin x) d x$
(iv) $\int\left(\frac{1}{2 x}+\frac{2}{x+3}\right) d x$
(v) $\int x \cos x d x$
(vi) $\int_{1}^{2}\left(x+\frac{1}{x}\right)^{2} d x$

Question 4

(a)If y is the quantity of drug decreases according to the equation $\frac{d y}{d t}=-y^{2}$.

Find y as function of the time t where the initial quantity is 10 units.
Also, find (i)The value of y after 2 hours.
(ii) The time at which there is no drug in the blood.
(b)If the quantity of a drug in the blood decreases according to the data:

Time:	t	0	2	4	6	8	10
Hours							
Quantity:	y	20	18	15	10	4	1
Units							

From these data, find the relation $y=a+b t$. Also, find the value of y at $t=3$.

